Generating PWM using PIC Microcontroller with MPLAB and XC8

This is our 10th tutorial of Learning PIC microcontrollers using MPLAB and XC8. Till now, we have covered many basic tutorials like  LED blinking with PICTimers in PICinterfacing LCDinterfacing 7-segment, ADC using PIC etc. If you are an absolute beginner, then please visit the complete list of PIC tutorials here and start learning.

In this tutorial, we will learn How to generate PWM signals using PIC PIC16F877A. Our PIC MCU has a special module called Compare Capture module (CCP) which can be used to generate PWM signals. Here, we will generate a PWM of 5 kHz with a variable duty cycle from 0% to 100%. To vary the duty cycle we are using a potentiometer, hence it is recommended to learn ADC tutorial before starting with PWM. PWM module also uses timers to set its frequency hence learn how to use timers beforehand here.  Further, in this tutorial we will use a RC circuit and a LED to convert the PWM values to Analog voltage and use it for dimming the LED light.


What is a PWM Signal?

Pulse Width Modulation (PWM) is a digital signal which is most commonly used in control circuitry. This signal is set high (5v) and low (0v) in a predefined time and speed. The time during which the signal stays high is called the “on time” and the time during which the signal stays low is called the “off time”.  There are two important parameters for a PWM as discussed below:

Duty cycle of the PWM:

The percentage of time in which the PWM signal remains HIGH (on time) is called as duty cycle. If the signal is always ON it is in 100% duty cycle and if it is always off it is 0% duty cycle.

Duty Cycle =Turn ON time/ (Turn ON time + Turn OFF time)



Frequency of a PWM:

The frequency of a PWM signal determines how fast a PWM completes one period. One Period is complete ON and OFF of a PWM signal as shown in the above figure. In our tutorial we will set a frequency of 5KHz.


PWM using PIC16F877A:

PWM signals can be generated in our PIC Microcontroller by using the CCP (Compare Capture PWM) module. The resolution of our PWM signal is 10-bit, that is for a value of 0  there will be a duty cycle of 0% and for a value of 1024 (2^10) there be a duty cycle of 100%. There are two CCP modules in our PIC MCU (CCP1 And CCP2), this means we can generate two PWM signals on two different pins (pin 17 and 16) simultaneously, in our tutorial we are using CCP1 to generate PWM signals on pin 17.

The following registers are used to generate PWM signals using our PIC MCU:

  1. CCP1CON  (CCP1 control Register)
  2. T2CON (Timer 2 Control Register)
  3. PR2  (Timer 2 modules Period Register)
  4. CCPR1L (CCP Register 1 Low)


Programming PIC to generate PWM signals:

In our program we will read an Analog voltage of 0-5v from a potentiometer and map it to 0-1024 using our ADC module. Then we generate a PWM signal with frequency 5000Hz and vary its duty cycle based on the input Analog voltage. That is 0-1024 will be converted to 0%-100% Duty cycle. This tutorial assumes that you have already learnt to use ADC in PIC if not, read it from here, because we will skip details about it in this tutorial.

So, once the configuration bits are set and program is written to read an Analog value, we can proceed with PWM.

The following steps should be taken when configuring the CCP module for PWM operation:

  1. Set the PWM period by writing to the PR2 register.
  2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
  3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
  4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
  5. Configure the CCP1 module for PWM operation.

There are two important functions in this program to generate PWM signals. One is the PWM_Initialize() function which will initialize the registers required to set up PWM module and then set the frequency at which the PWM should operate, the other function is the PWM_Duty() function which will set the duty cycle of the PWM signal in the required registers.

  PR2 = (_XTAL_FREQ/(PWM_freq*4*TMR2PRESCALE)) - 1; //Setting the PR2 formulae using Datasheet // Makes the PWM work in 5KHZ
    CCP1M3 = 1; CCP1M2 = 1;  //Configure the CCP1 module 
    T2CKPS0 = 1;T2CKPS1 = 0; TMR2ON = 1; //Configure the Timer module
    TRISC2 = 0; // make port pin on C as output


The above function is the PWM initialize function, in this function The CCP1 module is set to use PWM by making the bit CCP1M3 and CCP1M2 as high.



The timer module’s prescaler is set by making the bit T2CKPS0 as high and T2CKPS1 as low the bit TMR2ON is set to start the timer.



Now, we have to set the Frequency of the PWM signal. The value of the frequency has to be written to the PR2 register.  The desired frequency can be set by using the below formulae

PWM Period = [(PR2) + 1] * 4 * TOSC * (TMR2 Prescale Value)

Rearranging these formulae to get PR2 will give

PR2 = (Period / (4 * Tosc * TMR2 Prescale )) - 1

We know that Period = (1/PWM_freq) and Tosc = (1/_XTAL_FREQ). Therefore.....

PR2 = (_XTAL_FREQ/ (PWM_freq*4*TMR2PRESCALE)) – 1;

Once the frequency is set this function need not be called again unless and until we need to change the frequency again. In our tutorial I have assigned PWM_freq = 5000; so that we can get a 5 KHz operating frequency for our PWM signal.


Now let us set the duty cycle of the PWM by using the below function

PWM_Duty(unsigned int duty)

    duty = ((float)duty/1023)*(_XTAL_FREQ/(PWM_freq*TMR2PRESCALE)); // On reducing //duty = (((float)duty/1023)*(1/PWM_freq)) / ((1/_XTAL_FREQ) * TMR2PRESCALE);
    CCP1X = duty & 1; //Store the 1st bit
    CCP1Y = duty & 2; //Store the 0th bit
    CCPR1L = duty>>2;// Store the remining 8 bit

Our PWM signal has 10-bit resolution hence this value cannot be stored in a single register since our PIC has only 8-bit data lines. So we have use to other two bits of CCP1CON<5:4> (CCP1X and CCP1Y) to store the last two LSB and then store the remaining 8 bits in the CCPR1L Register.

The PWM duty cycle time can be calculated by using the below formulae:

PWM Duty Cycle = (CCPRIL:CCP1CON<5:4>) * Tosc * (TMR2 Prescale Value)

Rearranging these formulae to get value of CCPR1L and CCP1CON will give:

CCPRIL:CCP1Con<5:4> = PWM Duty Cycle / (Tosc * TMR2 Prescale Value)


The value of our ADC will be 0-1024 we need that to be in 0%-100% hence, PWM Duty Cycle = duty/1023. Further to convert this duty cycle into a period of time we have to multiply it with the period (1/ PWM_freq)

We also know that Tosc = (1/PWM_freq), hence..

Duty = ( ( (float)duty/1023) * (1/PWM_freq) ) / ( (1/_XTAL_FREQ) * TMR2PRESCALE) ;

Resolving the above equation will give us:

Duty = ( (float)duty/1023) * (_XTAL_FREQ / (PWM_freq*TMR2PRESCALE));


You can check the complete program in the Code section below along with the detailed Video.


Schematics and Testing:

As usual let us verify the output using Proteus simulation. The Circuit Diagram is shown below.


Connect a potentiometer to 7th pin to feed in a voltage of 0-5. CCP1 module is with pin 17 (RC2), here the PWM will be generated which can be verified using the Digital oscilloscope. Further to convert this into a variable voltage we have used a RC-filter and an LED to verify the output without a scope.


What is a RC-Filter?

An RC filter or a Low pass filter is a simple circuit with two passive elements namely the resistor and the capacitor. These two components are used to filter the frequency of our PWM signal and make it a variable DC voltage.

If we examine the circuit, when a variable voltage is applied to the input of R, the capacitor C will begin to charge. Now based on the value of the capacitor, the capacitor will take some time to get  fully charged, once charged it will block the DC current (Remember capacitors block DC but allows AC) hence the input DC voltage will appear across the output. The high frequency PWM (AC signal) will be grounded through the capacitor. Thus a pure DC is obtained across the capacitor. A value of 1000Ohm and 1uf was found to be appropriate for this project.  Calculating the values of R and C involves circuit analysis using transfer function, which is out of scope of this tutorial.


The output of the program can be verified using the Digital Oscilloscope as shown below, vary the Potentiometer and the Duty cycle of the PWM should change. We can also notice the output voltage of the RC circuit using the Voltmeter. If everything is working as expected we can proceed with our hardware. Further check the Video at the end for full process.



Working on Hardware:

The hardware setup of the project is very simple, we are just going to reuse our PIC Perf board shown below.



We will also need a potentiometer to feed in the analog voltage, I have attached some female end wires to my pot (shown below) so that we can directly connect them to the PIC Perf board.

Potentiometer-for-PWM-with-PIC-Microcontroller PWM-with-PIC-Microcontroller-PerfBoard


Finally to verify the output we need a RC circuit and a LED to see how the PWM signal works, I have simply used a small perf board and soldered the RC circuit and the LED (to control brightness) on to it as shown below


We can use simple female to female connecting wires and connect them according to the schematics shown above. Once the connection is done, upload the program to the PIC using our pickit3 and you should be able to get a variable voltage based on the input of your potentiometer. The variable output is used to control the brightness of the LED here.

I used my multimeter to measure the variable outputs, we can also notice the brightness of the LED getting changed for different voltage levels.


That’s it we have programmed to read the Analog voltage from the POT and convert into PWM signals which in turn have been converted into Variable voltage using RC filter and the result is verified using our hardware. If you have some doubt or get stuck somewhere kindly use the comment section below, we will be happy to help you out. The complete working is working in the video.

Also check our other PWM Tutorials on other microcontrollers:


#pragma config FOSC = HS        // Oscillator Selection bits (HS oscillator)
#pragma config WDTE = OFF       // Watchdog Timer Enable bit (WDT disabled)
#pragma config PWRTE = ON       // Power-up Timer Enable bit (PWRT enabled)
#pragma config BOREN = OFF      // Brown-out Reset Enable bit (BOR disabled)
#pragma config LVP = ON         // Low-Voltage (Single-Supply) In-Circuit Serial Programming Enable bit (RB3/PGM pin has PGM function; low-voltage programming enabled)
#pragma config CPD = OFF        // Data EEPROM Memory Code Protection bit (Data EEPROM code protection off)
#pragma config WRT = OFF        // Flash Program Memory Write Enable bits (Write protection off; all program memory may be written to by EECON control)
#pragma config CP = OFF         // Flash Program Memory Code Protection bit (Code protection off)

#define _XTAL_FREQ 20000000
#define TMR2PRESCALE 4

#include <xc.h>

long PWM_freq = 5000;

  PR2 = (_XTAL_FREQ/(PWM_freq*4*TMR2PRESCALE)) - 1; //Setting the PR2 formulae using Datasheet // Makes the PWM work in 5KHZ
    CCP1M3 = 1; CCP1M2 = 1;  //Configure the CCP1 module 
    T2CKPS0 = 1;T2CKPS1 = 0; TMR2ON = 1; //Configure the Timer module
    TRISC2 = 0; // make port pin on C as output

PWM_Duty(unsigned int duty)

    duty = ((float)duty/1023)*(_XTAL_FREQ/(PWM_freq*TMR2PRESCALE)); // On reducing //duty = (((float)duty/1023)*(1/PWM_freq)) / ((1/_XTAL_FREQ) * TMR2PRESCALE);
    CCP1X = duty & 1; //Store the 1st bit
    CCP1Y = duty & 2; //Store the 0th bit
    CCPR1L = duty>>2;// Store the remining 8 bit

void ADC_Initialize()
  ADCON0 = 0b01000001; //ADC ON and Fosc/16 is selected
  ADCON1 = 0b11000000; // Internal reference voltage is selected
unsigned int ADC_Read(unsigned char channel)
  ADCON0 &= 0x11000101; //Clearing the Channel Selection Bits
  ADCON0 |= channel<<3; //Setting the required Bits
  __delay_ms(2); //Acquisition time to charge hold capacitor
  GO_nDONE = 1; //Initializes A/D Conversion
  while(GO_nDONE); //Wait for A/D Conversion to complete
  return ((ADRESH<<8)+ADRESL); //Returns Result

void main()
    int adc_value;
  TRISC = 0x00; //PORTC as output
  TRISA = 0xFF; //PORTA as input
  TRISD = 0x00;
  ADC_Initialize(); //Initializes ADC Module
  PWM_Initialize();  //This sets the PWM frequency of PWM1

    adc_value = ADC_Read(4); //Reading Analog Channel 0 
  }while(1); //Infinite Loop


Comments (7)

  • Arkan M R's picture
    Arkan M R

    Hi sir,
    I am electrical engineering and I need more simple practical circuits about (delay time cct) in my work (electronic change over equipment) so as to make more safity in the work
    Asimple practical cct please
    And I would like to thank you very much about all these informatios
    thank you very much
    Arkan M R .

    Mar 17, 2017
  • B.Aswinth Raj's picture
    B.Aswinth Raj

    Hi Arkan,

    imple practical circuits about (delay time cct) in my work (electronic change over equipment) so as to make more safity in the work

    Kindly explain your requirements in detail, we will be happy to help you out!!

    And I would like to thank you very much about all these informatios
    thank you very much

    Thanks Arkan, your comments encourage us..

    Mar 19, 2017
  • Ann's picture

    Hi. I am writing a PWM code for PIC18f4550 micrcocontroller. I am using MPLAB X IDE with XC8. I am referring to your code to write a simple PWM code to test it on oscilloscope and later on build on it to do more things. I don't understand what are:
    CCP1X = duty & 1; //Store the 1st bit
    CCP1Y = duty & 2; //Store the 0th bit

    What are CCP1X and CCP1Y? What is their role?

    Mar 30, 2017
  • B.Aswinth Raj's picture
    B.Aswinth Raj

    Hi Ann,

    I will explain the following lines from my code

    CCP1X = duty & 1; //Store the 1st bit
    CCP1Y = duty & 2; //Store the 0th bit
    CCPR1L = duty>>2;// Store the remining 8 bit

    As you can see the variable duty contains the value of the PWM duty cycle. This va;ue has to be used to set the CCP1X and CCP1Y bit and also the CCPR1L register. 

    The following lines are from the datasheet

    The PWM duty cycle is specified by writing to the
    CCPR1L register and to the CCP1CON<5:4> bits. Up
    to 10-bit resolution is available. The CCPR1L contains
    the eight MSbs and the CCP1CON<5:4> contains the
    two LSbs.

    CCP1CON<5:4> is nothing but the CCP1X and CCP1Y bits respectively. The value of duty after this formulae(shown below) can be upto 10-bit resolution

    duty = ((float)duty/1023)*(_XTAL_FREQ/(PWM_freq*TMR2PRESCALE)); 

    Since the Registers in our PIC MCU can hold only upto 8-bits(PIC16F877A is a 8-bit MCU) the additional two bits (CCP1X and CCP1Y) are used to store the least two significant bits and the remaining 8 bits are stored into the CCPR1L register.

    Hope this answered your question.



    Mar 31, 2017
  • Thejo's picture

    I checked your code for my project and it worked well. now the problem is only the led is dimming but the fan or bulb doesn't dimming. Help me in this.

    Jun 16, 2017
  • B.Aswinth Raj's picture
    B.Aswinth Raj

    Hi Thejo,

    Glad that the code worked for you...

    I am not sure how you have interfaced the fan or bulb with the PIC MCU. Let me know what your driver circuit is. If you have used a relay it will not work. Hence make sure you use a power electronic device like MOSFET and you switch it properly using the PWM signals.


    Jun 16, 2017
  • emon's picture

    the timer0 in PIC18F is used to get 13ms delay. can u show steps to get the value of T0CON based on TMROH=0x02 and TMROL=0x12 and Fosc=20MHz.

    Jun 22, 2017

Leave a comment